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Human-in-the-Loop Optimization of Shared
Autonomy in Assistive Robotics

Deepak Gopinath1,3, Siddarth Jain2,3, and Brenna D. Argall1-4

Abstract—In this paper, we propose a mathematical framework
which formalizes user-driven customization of shared autonomy
in assistive robotics as a nonlinear optimization problem. Our
insight is to allow the end-user, rather than relying on standard
optimization techniques, to perform the optimization procedure,
thereby allowing us to leave the exact nature of the cost function
indeterminate. We ground our formalism with an interactive
optimization procedure that customizes control sharing using
an assistive robotic arm. We also present a pilot study that
explores interactive optimization with end-users. This study was
performed with 17 subjects (4 with spinal cord injury, 13 without
injury). Results show all subjects were able to converge to an
assistance paradigm, suggesting the existence of optimal solutions.
Notably, the amount of assistance was not always optimized
for task performance. Instead, some subjects favored retaining
more control during the execution over better task performance.
The study supports the case for user-driven customization and
provides guidance for its continued development and study.

Index Terms—Rehabilitation Robotics; Physically Assistive
Devices; Human Factors and Human-in-the-Loop

I. INTRODUCTION

FOR people with severe motor impairments as a result
of spinal cord or brain injuries, assistive and rehabil-

itation machines such as assistive robotic arms, upper or
lower limb prostheses and powered wheelchairs are crucial
for reducing their dependence on caretakers and increasing
the ability to perform activities of daily life. However, for
many, the control of such devices remains a challenge—for
example, due to their physical impairments or limitations of
the control interfaces. Limited interfaces issue control signals
that are low-dimensional, discrete and operate in modes which
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correspond to different parts of the control space that must
be switched between. The introduction of partial autonomy
to these devices—in which the control is shared between
the human and robotics autonomy—aims to help reduce the
cognitive and physical burden on the user.

The reduced bandwidth of the control signals generated
by motor-impaired users makes them more reliant on the
interaction with the autonomy, and also less adaptable and
more vulnerable to any arbitrariness present in the system—
for example, the choice of control interfaces and mappings, or
the exact specification of how control is shared between the
user and the autonomy. A thorough analysis of user perfor-
mance and the differences in performance between uninjured
and motor-impaired subjects calls for a rich mathematical
framework that can capture the various facets of the shared
control system, like the complex dynamics of the human-
robot interaction. Furthermore, the exact formulation used
to describe the human-robot interaction will determine (or
limit) the relevant and valid questions that can be asked and
how the analysis of performance metrics will be performed.
To accomplish this, we introduce a mathematical formalism
in which the customization procedure is formulated as a
nonlinear optimization problem over system parameters.

Since users differ in their physical abilities and desired
amount of assistance, customization of the amount of assis-
tance is critical for the adoption of assistive shared-control
systems. Predefined assistance levels can provide good start-
ing points but may not remain optimal for the user in the
long term. For example, the subject’s abilities will likely be
changing—either degrading (e.g. due to degenerative disease)
or improving (e.g. due to successful rehabilitation). As a result,
the need for assistance may increase or decrease. One way
to accomplish customization is to tune the system parameters
which will bring about a change in the human-robot interaction
and the final behavior. The aim is to optimize the human-robot
interaction during task performance. A straightforward choice
of optimality criterion is to consider task-related performance
metrics such as minimizing the time taken and energy ex-
pended. Such metrics however may not capture user-related
metrics like comfort, independence or satisfaction.

Our insight is that if we entrust the task of customization
to the users, they likely will tune the system in such a
way that the optimal interaction—according to their personal
optimality criterion—will emerge. Moreover, the user-driven
customization of assistance may be user-dependent in addition
to being task-dependent.

To ground our formalism, we present a first implementation,
in which the reasoning between the user control and the
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robot policy is a function of confidence in the inference of
human intent, with tunable parameters. Our interactive user-
driven customization system maps verbal cues from the human
to adjustments in these parameter values. Results from an
exploratory pilot study also are presented.

In Section II we present an overview of the relevant research
in the field of shared control systems in assistive technology.
Section III overviews of the general algorithm and system
design used in this study. The system implementation is
described in Section IV and Section V provides an overview of
the user study methods, tasks and metrics used. In Section VI
we present the results from our pilot study and discussion
followed by conclusions in Section VII.

II. RELATED WORK

The introduction of robotics autonomy to assistive devices
can offload some control burden from users to enable easier
operation. While full autonomy is an option, more common are
systems that share control with the human user—for reasons
of both robustness [1] and user preference [2].

The most common methods to share control between the
user and autonomous system include (a) the user selects the
higher-level goal and the autonomy generates the lower-level
control, (b) control partitioning schemes and (c) blending
the user controls and the autonomy commands. In the do-
main of robotic wheelchair research, the higher-level goals
typically are navigation goals [3], while control partitioning
for example places the control of speed with the user and
heading with the autonomy [4]. Control blending paradigms
often are employed for behaviors like obstacle avoidance [5].
Control sharing in case of robotic arms most commonly
involves user-specification of a target (such as an object) [6] or
pose correction [7], and the robot autonomously generates the
motion commands. Approaches that partition the control space
may, for example, place the control of end-effector position in
z with the human and in x, y with the autonomy [8]. Control
blending is less straightforward—because the user rarely is
able to issue a control signal with high enough dimensionality
to cover all control dimensions of the robot (e.g. 6D)—but
recently is gaining interest.

Moreover, there are approaches which study specifically
the customization of how this control blending happens [9].
The amount of control blending often is determined using
an arbitration function that is based, for example, on the
autonomy’s confidence in its prediction of the user’s goal [10].
Our work similarly employs an arbitration function to dictate
the amount of control sharing.

Optimization techniques have been adopted to generate dif-
ferent strategies for control sharing; for example, formulating
the problem as a POMDP and inferring a distribution over
goals [11], using pseudo-navigation functions for collabo-
rative control [12] or concatenating energy-optimal motion
primitives to create optimal trajectories [13]. Although these
approaches result in improved task performance (completion
time, control effort), the assistance schemes are mixed in
terms of user acceptance. In particular, there are instances
of assistance resulting in higher user dissatisfaction [11], and

users preferring to be in control and more cautious [13]. In
other studies users find the assistance at times to be unco-
operative and tolerate a loss of control only for a significant
improvement in performance [14].

In an attempt to construct more realistic cost functions,
others inspired by design research incorporate a measure of
“discomfort” into the optimization cost function [15]. How-
ever, the specific form of the cost function is domain dependent
and is not generalizable to other assistive devices such as
robotic arms.

Despite an improvement in task performance, none of the
above cost function formulations were able to guarantee high
user satisfaction (with the exception of domain-specific dis-
comfort [15]). The need for higher user satisfaction is crucial
for the acceptance of robot autonomy by the end-users in the
assistive domain. This gap motivates our approach to engage
the end-user in the optimization procedure.

III. PROPOSED FRAMEWORK

Principles from optimal control theory have been success-
fully used to account for different aspects of human motor
control such as arm trajectory formation, posture control and
locomotion [16], [17], [18]. The underlying motivation in
using optimal control theory is that biological systems have
evolved to produce motor commands which will optimize
motor behavior with respect to the task at hand [18]. When
a human operates an assistive robot to replace his/her lost
motor function, the extension of this reasoning is that the
optimizing principles are operating over control commands to
the robot effector rather than motor commands to the human
muscles. We frame our formalism within the language of
optimal control theory not only because of this biological
parallel, but also because it will allow for the analysis of the
effects of the various design decisions in and components of
a shared control system in a thorough and rigorous manner.

A. Formalism

Let x(t) denote the state of the system at time t. Let θ(t)
be the set of tunable parameters that will affect the amount of
control shared between the human and the robot. The other
control inputs to the system are uh(t) and ur(t), the control
commands generated respectively by the user and autonomous
robot policy at time t.

The control signal from the robot autonomy is generated by
a function fr(·) ∈ Fr,

ur(t)← fr(x(t)) (1)

where Fr is the set of all control behaviors corresponding to
different tasks.

We assume that the control command uh(t) is generated by
a function of fh(·) ∈ Fh,

uh(t)← fh(x(t)) (2)

where Fh is the set of user behaviors corresponding to
different tasks. fh(·) is simply a symbolic representation of
the mapping function that generates uh(t) and is completely
unknown to the autonomous system. The sole dependence of
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uh(t) on x(t) is an approximation because there may be a
large number of unobserved variables (e.g. fatigue or personal
satisfaction) affecting the user’s control.

The shared control system makes use of function β(·),
parameterized by θ

u(t)← βθ(uh(t),ur(t)) (3)

which arbitrates between the control commands from the
user and the robot policy to produce control command u(t)
executed by the robot.

A key insight in our formulation is that, for a time–varying
function β(·), the parameters themselves can be functions of
time and therefore may be interpreted as control signals. Then
the dynamics of the system can be written as

ẋ(t)← a(x(t),θ(t),uh(t),ur(t), t) (4)

where a(·) is in general a nonlinear, time-varying function.
Note that in this formulation the parameters θ(t) are treated
in the same way as the other control signals. The problem of
finding the set of parameters θ(t) that will generate the optimal
human-robot interaction and task performance (as determined
by a cost function) thus may be formulated as an optimal
control problem.

Optimal control models assume the existence of some kind
of cost function being optimized during task performance.1 In
general, the cost function J can be written as,

J ← h(x(tf ), tf ) +

tf∫
t0

k(x(t),u(t), t)dt (5)

where the first term corresponds to a terminal cost (e.g proxim-
ity of the end pose to the target pose) and the second term cor-
responds to a measure of internal cost (e.g energy expended,
completion time, etc). The true cost function however likely
is more complex, and could include additional factors such as
user satisfaction. The state boundary conditions are given by
x(t0) = x0 and x(tf ) = xf , where t0 and tf are the times
at which the robot is in the initial state x0 and final state xf .
The parameter constraints are θmin ≤ θ(t) ≤ θmax.

The elements of the framework fr(·), fh(·), β(·) and a(·)
are system-specific, and different choices of these functions
will have drastically different impact on task performance and
user satisfaction. Moreover, the impact is anticipated to be all
the greater on motor-impaired subjects.

B. Optimization

Typically optimization is performed over all control signals
that are inputs to the system. In our system, however, the con-
trol commands from the human and the robot (uh(t),ur(t))
are treated as given quantities, and the goal rather is to
optimize the interaction parameters θ(t).

In this work, we furthermore make no attempt to determine
the exact nature of the cost function J . There might be a
myriad of unmeasurable factors influencing the cost function,

1For example, arm trajectories generated by uninjured humans during
reaching tasks are reproduced using cost functions composed of torque
generated at the joints [16] or jerk of the end effector (hand) [17].

Fig. 1. System design. Core components include command arbitration and
the interactive optimization of how this arbitration happens.

and determining the exact mathematical form for the cost
function likely is an intractable problem. Making any kind of
approximation to simplify the cost function in turn will affect
the robustness and efficacy of the assistive system. Since we do
not want to reduce the assistive capabilities of our system, and
we have a human in the loop, our insight is that the optimiza-
tion task can be performed by the user him/herself, instead
of adopting standard nonlinear optimization algorithms. Thus
there is no need to concretely define J and the user tunes the
parameters θ(t) until the desired behavior is achieved.

In this user-driven customization system, the overall effect
of parameter tuning is that of changing the assistance offered
by the robot. The specific optimization procedure is described
in detail in Section IV-B.

IV. SYSTEM IMPLEMENTATION
Our system implementation is overviewed in Figure 1.

The key components of this system include the command
arbitration paradigm (Sec. IV-A), the user-driven optimization
procedure (Sec. IV-B) and the estimation of human intent (Sec.
IV-C). Also provided are details of how the human control
signals are acquired (Sec. IV-D) and the robot autonomy
commands are generated (Sec. IV-E).

A. Command Arbitration

In our implementation, the function β(·) that reasons be-
tween the robot and human control signals is a linear blending
function,

βθ(uh(t),ur(t)) , (1− αθ) · uh(t) + αθ · ur(t) (6)

where αθ ∈ [0, 1] is itself a function parameterized by θ.2 Note
that αθ = 0 corresponds to full teleoperation, and αθ = 1 to
full autonomy.

The majority of arbitration functions αθ can be reduced to
the functional form pictured in Figure 2 [10], characterized by

2The time index t is dropped from θ(t) for brevity in notation.
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Verbal Cue Parameters Changed Amount of change
“More” θ3 ↑, θ2 ↓, θ1 ↓ δθ ← δθ
“Less” θ3 ↓, θ2 ↑, θ1 ↓ δθ ← δθ

“Little More” θ3 ↑, θ2 ↓, θ1 ↑ δθ ← 1
2
δθ

“Little Less” θ3 ↓, θ2 ↑, θ1 (no change) δθ ← 1
2
δθ

TABLE I
MAPPINGS FROM VERBAL CUES TO PARAMETERS CHANGED

(↑ indicates a positive δθ and ↓ denotes a negative δθ)

a set of three parameters {θ1, θ2, θ3} and independent variable
c(t). The parameter set determines:

• θ1: The minimum value of c(t) above which control
blending is performed.

• θ2: The value of c(t) above which the blending parameter
is maximum and constant.

• θ3: The maximum value of α for any value of c(t).

Fig. 2. A prototypical arbitration function,
parameterized by θ = {θ1, θ2, θ3}.

Note that θ3 = 0
corresponds to
constant teleoperation
(irrespective of the
value of c(t)). The
relationship between
c(t) and αθ is linear
between θ1 and θ2, and
the slope of this linear
relation determines how
aggressively the robot
assumes control. The
parameter bounds are such that ∀i, θi(t) ∈ [0, 1] and θ1 ≤ θ2.
The independent variable c(t) in our implementation is
discussed in Sec IV-C.

In our pilot study, the parameters were tuned only between
tasks and were unchanged during task execution, and so
θi(t) = θi(t0), ∀t ∈ [t0, tf ]. The arbitrated signal u(t) was
the velocity of the end-effector in Cartesian space, converted
to joint-space velocities via inverse kinematics.

B. User–Driven Optimization of the Arbitration Parameters
In this first exploration of our interactive optimization

procedure, verbal commands from the human subject are
translated to changes in θ by the system operator. The in-
teractive optimization procedure is currently being formalized
and automated, as informed by this pilot data.

A change in assistance level can be achieved by modulating
one or more of the θi ∈ θ, according to θi = θi ± δθi. In our
implementation, at initialization δθi = 0.1. The value of δθi
is adaptive, and is halved if a request to increase assistance is
immediately followed by a request to decrease and vice versa
(in order to avoid oscillatory behavior).

Table I provides a few example mappings between common
verbal cues, the parameters changed and the values of δθ. We
chose to modulate more than one parameter at a time as it
helped to make the change in assistance level more perceivable
to the user.

C. Estimation of Intent
In our implementation, the independent variable c(t) of the

arbitration function is the autonomous system’s confidence in

Control Mappings
Mode 3D 2D
1 vx, vy , vz vx, vy
2 ωx, ωy , ωz vx, vz
3 — ωx, ωy

4 — ωz

TABLE II
OPERATIONAL PARADIGMS FOR THE TELEOPERATION INTERFACE

its inference of the intent (goal) of the human. The confidence
c(t) is computed at each execution step that the human pro-
vides a control signal, i.e. uh(t) 6= ∅. In our implementation,
c(t) is computed as

c(t) , w1(uh(t) · ur(t)) +w2(e
−d) (7)

where d is the Euclidean distance between the end effector and
an inferred target location at time t, and c(t) ∈ [0, 1]. The first
term in (7) provides a measure of agreement between the user-
generated commands and robot-generated commands.3 The
second term encodes the nearness to the target. Parameters
w1 and w2 are task-specific weights.

At each execution step this confidence measure is computed
for all candidate goals in the scene, g ∈ G, resulting in
a distribution of confidences cg(t) ∈ C over the candidate
goals.4 To compute these confidences, each control behavior
fg generates a command (where fg aims to reach candidate
goal g) which is used in the calculation of cg(t) according
to (7). The command associated with the target that has the
highest computed confidence is selected.

D. Control Interface and Mapping

The human control command uh(t) is captured via a tele-
operation interface, that consists of a 3-axis joystick operated
under two different mapping paradigms (Table II). The joystick
signals are mapped to the translational and rotational velocities
of the end-effector in Cartesian space. The first paradigm uses
only two of the three axes (no twist)—because many end-users
lack the hand function to perform twisting—and accordingly
defines four 2D modes to cover the six control dimensions of
the robot arm. We refer to this as the 2D mapping paradigm.
The second uses all three of the joystick axes under two 3D
modes and is referred to as the 3D mapping paradigm.

E. Derivation of the Autonomy Policy

The robot control command ur(t) is generated from an
autonomous control policy. While any number of techniques
may be employed to derive the behavior functions in Fr, there
are some limitations on the form that fr(·) should take. At-
tempting to return the robot to the pre-planned path (as many
planners do) does not make sense in shared-control systems
where the sources of deviations are human commands—this
likely would be unwelcome to the user. Instead replanning
would need to happen fast enough not to stall the task

3Commands uh(t) and ur(t) are first smoothed using a moving average
filter (0.6s), so that small command changes do not affect the confidence
measure drastically.

4In the pilot study the candidate goals are objects placed at predefined
positions in front of the robot. Our system also is able to autonomously
perceive object positions and use these as candidate goals.
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Fig. 3. Study tasks performed by SCI participant. Left to right: Simple Reaching (R), Reaching for Grasping (RfG), Reaching for Scooping (RfS).

execution. We therefore advocate the use of real-time control
policies which are defined in all parts of the state space.

Our current implementation favors dynamical systems for-
mulations. The autonomous robot policies are learned from
human demonstrations using an approach known as Stable
Estimator of Dynamical Systems (SEDS) [19]. In SEDS, the
target poses are modeled as attractors of a dynamical sys-
tem. For each task, a set of N demonstrations are collected
by kinesthetically moving the robot. Demonstrations consist
of pairs of joint angles x(t) ∈ R6 and joint velocities
ẋ(t) ∈ R6. The SEDS algorithm learns the parameters of
a time-independent dynamical system which models the joint
velocities as a function of joint angles, and so

ẋ(t)← fr(x(t)) (8)

and ur(t) , K(ẋ(t)) where K(·) is the forward kinematics
of the robot arm (since human teleoperation and control
blending both happen in the end-effector Cartesian space). The
dynamical system ensures that the policy exists everywhere
in the workspace, and that the robot trajectories follow the
general contour of the task demonstrations.

V. PILOT STUDY METHODS

The experiments were performed using the MICO robotic
arm (Kinova Robotics, Canada) which is specifically designed
for assistive purposes. The system was implemented using
the Robot Operating System (ROS) and model learning was
performed using MATLAB. The maximum end effector trans-
lational velocity along any axis was capped at 20 cm/s.

A. Task Descriptions

Three tasks were developed for our pilot study (Fig. 3).
Simple Reaching (R): The user teleoperates the robotic arm
to reach a single object (coffee carafe) placed in front of
the robotic arm. The purpose of this task is to get the
user accustomed to the control interface and to the different
assistance levels provided by the system. At the end of the
task, the assistance level that the user preferred was noted.
Reaching for Grasping (RfG): The user teleoperates the
robotic arm to reach one of two objects on the table with a pose
suitable for grasping, as the robot arm provides assistance.
There is a near object (mug) and a far object (box), each

of which requires a different orientation of the gripper for
grasping (side and top, respectively) and accordingly also
different approach trajectories during reaching.

Reaching for Scooping (RfS): The user teleoperates the
robotic arm to reach for one of two objects on the table with a
pose suitable for a scooping motion, as the robot arm provides
assistance. There is a near object and a far object (both bowls),
each of which requires a different approach trajectory. For this
task, the end effector of the robotic arm is fitted with a spoon
which must be inserted into the bowl.

B. Study Protocol and Metrics

Subjects: For this exploratory study 17 subjects were
recruited—13 uninjured control subjects (mean age: 26± 4, 8
males and 5 females) and 4 spinal cord injury (SCI) subjects
(mean age: 35± 14, all males, C3-C5 injury levels). Seven of
the uninjured subjects (5 males, 2 females) and 3 of the SCI
subjects used the 3D interface paradigm, and the remaining
subjects used the 2D paradigm. All participants gave their
informed, signed consent to participate in this experiment,
which was approved by Northwestern University’s Institutional
Review Board.

Protocol: Each user performed all three tasks. The purpose
of the practice task (R) was to get the user accustomed to
the control interface and assistance system. Data was then
collected on the remaining two tasks (RfG, RfS). The order of
presentation for the RfG and RfS tasks was randomized and
balanced across subjects, to avoid ordering effects.

Before the RfG and RfS trials, the user was first asked
to operate the system in full teleoperation mode (tel) and
also under three predefined assistance levels (min, mid and
max). After this phase, the subject was given the option to
customize the assistance level. Changes in assistance levels
were communicated verbally to the system operator resulting
in the parameter changes outlined in Table I. The user then
tested the customized assistance level by executing the task.
This customization procedure was repeated until the user was
satisfied and lasted on average 10 and a maximum of 15
minutes, resulting in assistance level custom. Data collection
began only after this customization process was completed.
Three trials were collected for min, max and custom assistance
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Fig. 4. Task completion time (top row) and number of mode switches (bottom row) for uninjured vs. SCI subjects (first column), Task 1 vs. Task 2 for
uninjured subjects only (second column), Task 1 vs. Task 2 for SCI subjects only (third column).

levels.5 A typical session lasted approximately 1-1.5 hours.
For the first (non-practice) task, the baseline from which
customization began was the mid level assistance, with level
custom being the result after customization. For the second
task, customization began at this level custom from the first
task as the baseline, with the option to further customize
resulting in level custom for the second task.
Metrics: A number of objective metrics evaluated this study.
Task Completion time was the amount of time spent accom-
plishing a task. Mode Switches refers to the number of times
the subject switched between the various modes of the control
interface (Table II). Mode switches additionally is an indirect
measure of the effort put forth by the user. At the end of the
study, subjective data was gathered via a brief questionnaire.
Users were given statements about the assistance system to rate
on a 7-point Likert scale (1 is low, 7 is high), according to
their agreement. The questions primarily concerned the utility
value of the assistance system (U1), the system’s accuracy in
goal perception (CA1) and its understanding of what the user
is trying to accomplish (CA2), and the contribution from the
user (CO1) and the system (CO2) in task accomplishment.

VI. RESULTS

Here we report the results of our pilot study.6 An improve-
ment in task performance with customization is demonstrated,
and a number of other interesting observations are noted. Task

5For one SCI participant one less trial was recorded for min assistance level
during the first task due to a clerical error.

6The video of the study can be found at http://argallab.smpp.northwestern.
edu/index.php/publications/

performance metrics for different assistance levels (denoted
by min, max and custom in the plots) and teleoperation (tel)
are analyzed across different subject groups, tasks and control
interfaces. Note that the custom assistance level always lies in
between (or is equal to) min and max. Statistical significance
is determined by Welch t-tests for Figures 4-5 and two sided
Wilcoxon Rank-Sum Test for Figure 6, where (***) indicates
p < 0.001, (**) p < 0.01 and (*) p < 0.05.

A. Observations across Uninjured and SCI subjects

Insight into Cost Function: In this study, 17 subjects per-
formed 34 rounds of customization in total. For 7 customiza-
tion rounds the mean custom task completion time was greater
(by at least one standard error) than that of max. Similarly, the
number of mode switches for custom was greater than that of
max for 14 customization rounds. This indicates that subjects
are not always optimizing for standard performance metrics—
because there does exist a parametrization (max) which was
known to the subjects and performs better with respect to these
metrics. This provides insight that the true cost function that
the user is optimizing likely is more complex than a simple
time-optimal or minimum-effort cost function.

Task Performance: In Figure 4 (first column), the difference
between uninjured and SCI subjects’ task completion times
drops steadily from tel to custom assistance levels. The t-tests
revealed that while the difference between uninjured and SCI
was statistically significant for tel (p = 5.1e-4), min (p = 6.5e-
5) and max (p = 0.027), this difference disappeared with the
custom (p = 0.096) assistance level. That is, with customized
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Fig. 5. Left Column: Task completion time (top) and number of mode
switches (bottom) for the 2D vs. 3D interfaces. Right Column: Within-
interface assistance comparison for the 2D (top) and 3D (bottom) interfaces.

assistance, the performance of SCI subjects was statistically
equivalent to that of uninjured subjects. The variance in the
data also decreases with customized assistance, showing the
performance to become more consistent.

Interestingly, for mode switches there was no statistical
difference between uninjured and SCI subject data for any of
the assistance levels. This suggests that the number of mode
switches is primarily determined by the nature of the task and
control interface, and not the state of injury. However, SCI
subjects do take more time than uninjured subjects to perform
the same number of mode switches.

B. Observations across Tasks

Figure 4 (second and third columns) shows how task com-
pletion times and number of mode switches change between
the first and second task for uninjured and SCI subjects.
A statistically significant difference in performance only is
observed for custom assistance, for both groups. Interestingly,
SCI subjects show an improvement in task completion times
(p = 7.8e-3) and mode switches (p = 8.9e-3) between the
first and second tasks, whereas uninjured subjects exhibit a
performance decrease. These changes in performance can be
explained by the changes in assistance amount that result
from the between-task customization (discussed further in
Section VI-D).

C. Observations across Control Interfaces

Figure 5 (first column) shows the task completion times and
mode switches for subjects using the 2D and 3D interfaces.
Different operational modes do not seem to have an effect
on task completion times, as both groups are statistically
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Fig. 6. Relative change in assistance parameters during customization for
Uninjured vs. SCI subjects (left) and 2D vs. 3D interfaces (right).

equivalent—despite the fact that for mode switches the dif-
ference between the 2D and 3D interfaces is significant. The
second column of Figure 5 shows a within-interface perfor-
mance comparison between tel and the different assistance
levels. For all levels assistance significantly helped in reducing
the number of mode switches during task execution.

The comparable task completion times may be explained
by the fact that easier control compensates for time lost
during mode switches. That is, due to the greater number of
mode switches required for the 2D interface compared to the
3D interface, more time is taken performing mode switches.
However, the number of dimensions simultaneously controlled
is less for the 2D interface compared to the 3D interface, which
makes the control easier.

D. Relative Change in Parameters during Customization

Figure 6 shows the change in amount of assistance (pa-
rameter values) during customization for uninjured and SCI
subjects. While SCI subjects on average increased the amount
of assistance (p = 0.020) during the second phase of cus-
tomization, uninjured subjects chose to reduce the amount of
assistance (p = 0.006). By contrast, there are no noticeable
changes in the amount of assistance when using the 2D versus
3D interface. Injury thus seems to be the primary factor
in how subjects choose to change the customized assistance
level, and the mapping paradigm seems to have little effect.
It furthermore is interesting that uninjured subjects chose to
reduce assistance in spite of an associated decrease in task
performance.

E. User Survey

Users rated (Fig. 7) the utility value of the assistance system
fairly high (mean = 5.9±0.8) indicating that in general having
assistance was favored. The users also thought that the system
was able to perceive goals accurately (mean = 5.1 ± 1.8)
and the inability to estimate human intent was fairly low
(mean = 3.1 ± 1.1). The users also felt that they played an
important part in accomplishing the task (mean = 5.5± 1.0),
almost comparable to the contribution from assistance (mean
= 5.1± 1.6), maybe indicating that they were not prepared to
relinquish control altogether.
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Fig. 7. User responses on perceived utility, contribution and capability.

F. Discussion

From our pilot study we saw that compared to pre-defined
assistance levels, customization improves task performance
and helps to reduce performance differences between unin-
jured and SCI subjects. Post-experiment surveys also revealed
that the users found the customized assistance paradigm to
be useful. These results establish a need for customization
of assistance levels. Therefore, our next step will be to ex-
plore multiple possibilities for building effective and intuitive
customization mechanisms (e.g. physical interfaces operated
by the user) which will suit individual requirements and
preferences, and to evaluate on a larger end-user population.
The results also show that the true cost function that is being
optimized is more complex than a simple time-optimal or
minimum-effort cost function, indicating the need to inves-
tigate the exact specification of the true cost function that is
being optimized by the human in a shared control system.
A more comprehensive user survey will also be administered
in which the formalized customization procedure will be
evaluated thoroughly.

VII. CONCLUSIONS

In this work, we formalized human robot interaction in
shared autonomy within the framework of optimal control
theory. Furthermore we introduced a system for user-driven
customization as a constrained nonlinear optimization problem
within this framework. Unlike standard optimization problems
in which the form of the cost function is predetermined in this
work no such assumptions were made. Instead, the end user
was allowed to directly perform the optimization procedure.
The aim is that this will lead to higher user satisfaction,
which is crucial for the acceptance of novel technologies in
the assistive domain. An interactive user-driven customization
system was developed to ground the formalism and the results
from the pilot study were presented. Results showed that
all subjects were able to converge to a optimal assistance
paradigm, and an improvement in task performance with
customization also was demonstrated.
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