
Towards Software-Enabled Rehabilitation

Todd D. Murphey and Brenna D. Argall

Abstract— Software-enabled rehabilitation techniques hold
the promise of revolutionizing continuous, at-home, and remote
care, both on-going and immediately post-trauma. However,
critical challenges arise when automating the schedule of
therapy and when automating tasks. Challenges include the
software needs for dynamic tasks versus those of static tasks,
human-in-the-loop control/safety, and interface design. This
note discusses some of these challenges and how they relate
to creating simple, inexpensive devices that can be used in
various rehabilitation settings. In particular, software design
plays a critical role in scaling down the complexity of some
types of therapy.

I. INTRODUCTION

Robotics has played a substantial role in physical therapy
and physical augmentation in the last few years. Well de-
signed robotic systems can physically support people during
motion [4], keeping them safe and helping them avoid unsafe
exertion. Such devices can also play a large role in the design
of therapies. But software design rarely plays a central role
in the creation of these robots; instead, most of the effort
goes into make a robot that is naturally mechanically safe.

There are increasingly reasons to view software as one
of the fundamental challenges in automated rehabilitation
systems. First, software—once written—is essentially free
and can be distributed across large populations easily. Insofar
as any therapy is possible without a device supporting it, that
means that therapy infrastructure can be provided for free.
That doesn’t mean that software can replace mechanically
supported therapy approaches, but it does mean that there
may well be types of therapy that can be accomplished
without any use of physical infrastructure. Moreover, these
software-enabled therapy tools might be used in conjunc-
tion with physical infrastructure like therapy machines, to
enhance their operation.

This note discusses different ways in which therapy prac-
tices are, or can be, influenced by software design. It also
focuses on what needs software could provide and how those
needs push on engineering practice and how they require
fundamental advances in algorithms. This paper focuses on
four obstacles we have identified in the past few years
of work in this area: 1) the difference between dynamic

{t-murphey,brenna.argall}@u.northwestern.edu
Departments of Mechanical Engineering and Electrical Engineering &

Computer Science, Northwestern University, 2145 Sheridan Road, Evanston,
IL, USA 60208

This material is based upon work supported by the National Science
Foundation under award CNS—1329891 “CPS: Synergy: Collaborative
Research: Mutually Stabilized Correction in Physical Demonstration”. Any
opinions, findings, and conclusions or recommendations expressed in this
material are those of the author(s) and do not necessarily reflect the views
of the National Science Foundation.

tasks and quasi-static tasks, 2) human-in-the-loop control, 3)
interface design, and 4) implications for numerical methods
used in automated therapy.

II. SOFTWARE SUPPORT FOR DYNAMIC TASKS

Tasks in therapy involve motion. But whether that motion
is sensitive to the particular decisions made in software
(e.g., simulation) depends in many respects on how dynamic
the tasks and motions are. Many of the tasks used for
physical therapy are dynamic tasks for which destabilization
is a risk; for example walking on a treadmill or balancing
on balance board. Accordingly, a number of virtual reality
therapy systems have incorporated dynamic tasks, like bal-
ancing and walking, into their gaming environments. There
are simulation tasks, like virtually pushing a block on a
table using quasi-static assumptions, that pose little risk of
destabilization and creating a confusing environment for a
subject to operate within. However, dynamic tasks—such as
the one pictured in Fig. 1—can easily go unstable, either
because the subject moved in a way that caused instability
or because the numerical representation of the dynamics
created instability. Clearly that latter is undesirable, but even
the former creates problems in therapy because of intrinsic
frustration in tasks that are—for the subject—impossible.

Control-aware software—software that either has task
controllers available or that can synthesize controllers in
real-time—can address subject frustration by providing the
subject with controlled task support. This can come in the
form of creating artificial impedance, or could potentially
treat the user as a disturbance, or could provide a control
signal that augments the subject control to maintain stability.
Whatever the choice, software is playing a critical role in
determining the usability of a therapy approach. In Fig. 1,
we use a controller to augment a user’s controller to ensure
that task goals (e.g., stability of the pendulum in its inverted
position) are achieved. Crucially, we also parameterize the
amount of help the controller provides so that the subject
has to be involved in the task.

III. HUMAN-IN-THE-LOOP CONTROL

The previous section argues that control-aware software
will be a critical component in the automated support of
therapy. One key aspect of this support is that the subject
will always be in the loop, participating in control. Moreover,
the subject may not behave predictably—and the statistics
of motion can be expected to potentially be far out on the
“tails” of human motion—but the subject’s motion needs
to always participate actively in motion determination (e.g.,
motion direction/speed), motion stability (e.g., insisting on



Fig. 1. An example of software-supported motion direction. A person
(upper left) demonstrates motion using the Kinect sensor (upper right) to
control a virtual double inverted pendulum (bottom). The person’s motion is
augmented by the synthesized feedback controller so that the double inverted
pendulum motion projects back to a stable, feasible motion.

eigenvalues of a linear dynamical system be in the left of
the complex plane), and motion safety (e.g., not allowing
trajectories to enter unsafe/undesirable regions). The question
then arises: For what classes of motion can we actually
do this analysis, and for what classes of motion can we
synthesize controllers in real-time, and for what classes of
motion can we analyze the synthesized controllers in real-
time? All three of these questions need to be addressed for
any task with which one intends to engage a subject.

A. The Role of Receding Horizon Control in Therapy

The main issue with augmenting human motion with
embedded controllers is that control synthesis is challenging,
both analytically and computationally, and “closing the loop”
improperly can often make a system more unstable that it
was originally. Four factors play dominant roles in control
design for subject-in-the-loop control. First, the body and the
environment it operates in are relatively high-dimensional.
At a minimum, the body needs to be regarded as having
20-40 degrees of freedom, and the environment can be
equally complex. Second, the body and its environment
are often nonlinear. Third, nonsmooth behavior can play
a substantial role in the dynamics, particularly during the
intermittent contact experienced during locomotion. Lastly,
even if a controller has been synthesized for all these needs,
verification of the controller (e.g., identifying its basin of
attraction and guaranteeing trajectories cannot enter unsafe
states) is needed. These four needs are challenging even
in the most benign settings (e.g., low dimensional, linear
systems with unilateral constraints and safety sets described
by hyperplanes in the state space). There are two natural
conclusions to reach. First, we should only assign tasks
for which these problems are solvable when working with
subjects. Second, we need new software tools that extend
these capabilities to more relevant tasks of high(er) dimen-
sion (e.g., [2]), nonlinearities (e.g., again [5]), non smooth
behavior [3], and verification.

B. Compressing High Dimensional States in an Interface

The first factor in control design mentioned above—the
high dimensional nature of the control problem—is not
only a problem for control synthesis. It is also a serious
challenge for the subject, particularly when we provide the
subject with an interface intended to assist them in the
determination of a policy for task completion. If we provide
feedback to the subject, that feedback has to in some manner
compress high dimensional tasks into lower dimensional,
understandable settings. For instance, in [6] we used linear
quadratic methods to provide vibrotactile feedback to the
user in Fig. 1. Linear quadratic control laws can be thought
of as a type of compression—they take the state in Rn and
return a signal in the control space Rm; it is common for
m << n. Regardless of how compression occurs, it is vital
to compress state information in any interface that provides
feedback to a subject.

IV. CHOOSING NUMERICAL METHODS

A minor note on numerical methods is warranted. We
use trep, available at http://trep.googlecode.com, developed
in our lab [1] so that we have numerical routines that are
capable of i) simulation, ii) estimation and iii) linear and
nonlinear control synthesis, all in an internally consistent set-
ting. Certainly the variational integrators that trep uses are
not the only reasonable choice; there are likely many choices
one could make and still have these three needs be coherent
with each other. However, we have benefitted substantially
from this choice, particularly when it comes to bandwidth
and sensitivity to delays. Controllers for operator-in-the-loop
control of a swinging mass system [5] can run experimentally
at very low frequencies, including frequencies lower than
the Nyquist frequency for the linearized equations. The same
control system, changing only the numerical method to Euler
integration, does not perform acceptably at frequencies an
order of magnitude greater. This is only to say that, as we
design embedded systems that support human motion, it may
well be important to choose numerical methods carefully in
order to have software that is reliable.

V. CONCLUSIONS

Software will play an increasingly important role in au-
tomating therapy processes. The developed software will
need to have many characteristics, including extraordi-
nary reliability in the presence of substantial environmental
challenges. Human-in-the-loop control presents many chal-
lenges, and human-in-the-loop control with subjects requir-
ing therapy simply has amplified versions of these chal-
lenges. Specifically, dynamic tasks—such as balance during
walking—will require special attention.

REFERENCES

[1] E. Johnson and T. D. Murphey. Scalable variational integrators for
constrained mechanical systems in generalized coordinates. IEEE
Transactions on Robotics, 25(6):1249–1261, 2009.

[2] T. D. Murphey and B. Argall. Making robotic marionettes perform.
In ICRA Workshop on Robotics and Performance Arts: Reciprocal
Influences, 2012.



[3] D. Pekarek and T. D. Murphey. A projected Lagrange-d’Alembert
principle for forced nonsmooth mechanics and optimal control. In IEEE
Int. Conf. on Decision and Control (CDC), pages 7777 – 7784, 2013.

[4] Michael Peshkin, David A Brown, Julio J Santos-Munné, Alex Makhlin,
Ela Lewis, J Edward Colgate, James Patton, and Doug Schwandt.
Kineassist: A robotic overground gait and balance training device. In
Rehabilitation Robotics, 2005. ICORR 2005. 9th International Confer-
ence on, pages 241–246. IEEE, 2005.

[5] J. Schultz and T. D. Murphey. Extending filter performance through
structured integration. In American Controls Conf. (ACC), 2014.

[6] E. Tzorakoleftherakis, F. Mussa-Ivaldi, R. Scheidt, and T. D. Murphey.
Effects of optimal tactile feedback in balancing tasks: a pilot study. In
American Controls Conf. (ACC), 2014.


